
MATH2340 Essay 2
Denys Parsons’ Directory of tunes is a classification of melodies. What problems

arise when attempting to place melodies in a systematic order, and what
mathematical ideas can be used to solve them?

1 Introduction

Denys Parsons created a directory of tunes, to look up these tunes you use a Parsons Code; you
create this code by thinking about some notes of the tune and whether they go up (u), down (d)
or remain the same (r) relative to the last. The code may look like ∗uurdddduurdr (the theme
from Beethoven’s Symphony No. 9, Ode to Joy). I have written an example piece of code that
takes midi data and produces a parsons code and contour plot (see appendices).

Figure 1: Piano roll representation of contour below

~/programming/uni/math2340 $./contour.py $(./miditoparsons.py test2.mid)

*uuuuuuuuddddddd

*

/ \

* *

/ \

* *

/ \

* *

/ \

* *

/ \

* *

/ \

* *

/ \

* *

/

*

Figure 2: Script to convert single track monophonic midi to Parsons code and contour plot

1

This is an example of a way of classifying a tune in a way that can be looked up later, in this
essay I will analyse Parsons code and other ways of achieving the goal of organising music in a
systematic way for lookup later.

2 Discussion

The Parsons code is, in essence a human-usable hashing function for music (it’s not very good
notation 1). A hashing function is defined as a function that maps data of any size to a fixed
size. Essentially we’re reducing the whole of the pitch range possible when written in music to the
relation between each pitch when played in series. Hashes can be used to generate a data structure
called a hash table. These are often used in computing for quick storage and retrieval of data. The
Parsons book The Directory of Tune and Musical Themes is an example of a rudimentary hash
table intended to be human-usable. One difference however is that hashing algorithms try to keep
an even distribution of hash outputs; the Parsons code outputs are not at all even, in proceedings
from Bridges Conference 2018, Andrew Crompton (Crompton, 2018) generated a ’chequerboard’
that represented all places in which the codes in The Directory end up in The Directory showing
that only one tune reached the −15 mark and only two the 15 mark (that is, 15 descending notes
in a row).

Figure 3: Chequerboard showing where each tune in Parsons code ends up
(Crompton, 2018)

A hash table is constructed as a series of buckets each produced from the full hash. A hash is
generated and then through some function reduced into a set amount of ’buckets’ (usually by
modulo as this easily controls the number of buckets). This could be thought of as the truncation
to 16 notes in The Directory. The script in appendix A can be used as a hashing function for an
indeterminate length of music, implementing the limit allows for the construction of the buckets.
From a potentially infinite length of a Parsons code we allows ourselves 315 buckets which is suitable
as each of the tunes in The Directory are organised ’alphabetically’ by their code. Further, this
allows us to look up any code that is less than 16 long as each entry is ordered such that we can
consider each tune in the book past the first occurrence of this code as a substring of the full code.

1As seen here: https://www.youtube.com/watch?v=wY-0IMkHhMs

2

A particularly nefarious composer could also manage to compose many works that sound different
but encode to the same code as all the other pieces (similar to generating hash collisions). For
example the two pieces here have the same Parsons code despite being very different sounding:

~/programming/uni/math2340 $./miditoparsons.py First\ Piece.mid

*uuuddu

~/programming/uni/math2340 $./miditoparsons.py Second\ Piece.mid

*uuuddu

If this method of encoding became popular it wouldn’t be hard for composers to write pieces that
fit with the codes of more famous pieces of work to get noticed when searching for the piece you
were thinking of. This creates a problem as the hashing algorithm is easy to create collisions for,
of course the idea isn’t to be cryptographically secure but in a scenario in which any person could
write a piece that appears in the music database it wouldn’t be hard to make the database unusable
by flooding it with collisions. This problem exists in hash table too, however hashing algorithms
are more suitable when they are producing an even spread of values on the output. We’ve shown
that this is less likely with music both because creatively we tend towards a tonal centre as in the
chequerboard and that it’s very easy to construct a hash collision as in the two pieces above.

Parsons has solved the issue of creating a systematic order of tunes by reducing the problem space
to being only three points of notation and then limiting the length, this in essence creates a hash
table. This allows humans to be able to create the code in their heads and look it up in the book.
A study on 36 users of the parsons code found that 0% of users with zero background could make
a successful query however. (Uitdenbogerd & Yap, 2003) And that only when professional users
used the system did the number arrive at over 50%. This perhaps suggests that it’s not useful as
a means of looking up tunes.

Further solutions to this problem have been created, incorporating more and more musical elements.
For example, the ’Kolta code’ that encodes rhythmic information as ”shorter, longer, or the same”.
This has the same number of possible unique encodings as the Parsons code (as they both use a
set of magnitude 3 as their basis. However in the patent for this code (Kolta, 2008) he combines
both codes to create the Kolta-Parsons code which instead uses 9 possible characters. These can
then be used with algorithms used for DNA-matching to find music in a database.

This means of course that both codes are still as ’human-usable’ (within the bounds of musical
ability as discussed above) but combining them both allows for 915 combinations, allowing for each
element in the directory to be much more unique than either of the codes. However looking up a
song in a book full of 915 combinations may be more difficult for the human (which, is why this
patent was focused on music database software probably).

Whilst both have the same time complexity, that is, O(n) to find each song from its code, the
actual time for the Kolta-Parsons codes will be a lot longer. The time complexity O(n) results
from a pure linear search through the book. O(log n) could be achieved via a binary search in both
cases, as the book is ordered. Through a binary search approach, the proportions of each divide
could be altered cleverly to get a result that is still worst case O(log n) but the average number of
comparisons may be smaller. Hash tables are O(1) on average, O(n) at worst, with no collisions,
however the book has a time complexity of finding the entry in a sorted list associate with it, if
there are collisions in the book there’s the possibility of it being O(n2) even, but for now we will
assume there are none, and even if there were some the number of songs with the same code is
going to be at most 10 to 15 in such a book.

Further notation forms could be developed either reducing the music down more to become more
usable. For example in the Kolta code, removing the ’same length’ part to make it just ’short,

3

or long’ this makes a 215 length list possible, which is a bit small but I’d suggest that knowing
the genre of the song and even if there were three or four songs with the same pattern a human
can recognise which one it is. Easily you could make a book of 32768 songs with two or three in
each ’slot’ and cover most of the less-engaged listener’s repertoire of songs that they listen to. The
problem for humans is mainly that of ease of use of the system rather than that of saturation of
each string of code. As of right now I have 34598 pieces of music saved on my hard disk,that’s
around 700GB of data, the average listener will have much less. This perhaps shows that the
amount of music that the average listener isn’t enough to fill the above 915 strings purely with
encoding of melody and timbre. Of course, music is more than that. Not accounting for other
musical elements like texture, time signature, dynamics etc.

An obvious issue with this system of notation is music without a melody or any appreciable
beat, examples exist in contemporary music, ambient music, pieces with lots of polyphony or
polyrhythms, and extreme forms of music like noise. These systems are unable to encode these
sorts of music, and thus another system would have to be used. Further these systems break down
with more modern electronic styles that utilise techniques like sampling, or electronic dance music
which often sticks rigidly to a particular rhythm across the genre.

More modern systems methods are kept secret but most use a method called acoustic fingerprinting
in which the audio recorded is analysed to find the ”peak intensities” and those are used as a key
in a hash table to find each song (Wang, 2010).

3 Conclusion

Through this essay I’ve analysed the problems that arise when trying to encode music using a
particular element of it and reducing it down to an easier notation for humans to use and look
up in a book. Through the analogy to a hash table in computer science I’ve been able to find
and demonstrate issues with Denys Parson’s code and further, the Kolta-Parsons code patented in
2008.

Whilst both of these systems are usable for pieces that adhere to, essentially, a western-focused
and historical view of music they are lacking to be able to encode more contemporary types of
music. Studies (Uitdenbogerd & Yap, 2003) also suggest that they may be hard to use for their
intended audience (people with little to no musical ability). These systems, however do allow for
music to be written down and ordered in a systematic way where applicable and so achieve their
goals of doing so. Often more up-to-date systems will use fingerprinting and actual audio analysis
meaning that humming the tune into a microphone is possible.

4

References
Crompton, A. (2018). The checkerboard of tunes.
Kolta, M. J. (2008). Method for locating information in a musical database using a fragment of a

melody. (US Patent 7,962,530 B1)
Uitdenbogerd, A., & Yap, Y. (2003, 01). Was parsons right? an experiment in usability of music

representations for melody-based music retrieval.
Wang, A. (2010, Sep). How shazam works. (https://laplacian.wordpress.com/2009/01/10/

how-shazam-works/, Accessed 19-12-2019)

A Code Listing for Midi to Parsons code

#! / usr / b in /env python
”””

Take a midi f i l e and conver t i t to parsons code ,
wi th a l i m i t and o f f s e t

”””
import mido
import sys

def mid i to par sons (m i d i f i l e , l i m i t =16, o f f s e t =0):
”””

Input : m i d i f i l e (s t r i n g) = A midi f i l e path
l i m i t (i n t) = How long i s the parsons code
o f f s e t (i n t) = How many notes in do we s t a r t

Output : parsons (s t r i n g) = A s t r i n g c o n t a i n i n g a parsons code
l e n g t h l i m i t a t an o f f s e t from the
s t a r t o f the f i l e

”””
count = 0
parsons = ””
for message in mido . Mid iF i l e (m i d i f i l e) :

i f ” note on ” in str (message) and o f f s e t == 0 :
i f parsons == ”” :

i n i t i a l i s e l i s t
prev = message . note
parsons += ”∗”

simple comparison
i f message . note > prev :

parsons += ”U”
prev = message . note

e l i f message . note < prev :
parsons += ”D”
prev = message . note

e l i f message . note == prev :
parsons += ”R”
prev = message . note

#increment count
count += 1
i f count >= l i m i t :

break
e l i f ” note on ” in str (message) :

o f f s e t −= 1

5

return parsons

i f name == ” main ” :
print (m id i t o pa r sons (sys . argv [1]))

B Code Listing for Parsons Code to Contour Plot

#! / usr / b in /env python
””” Parsons code to contour p l o t ”””

import sys

def contour (code) :
”””

Input : code (s t r i n g) = Parsons code s t a r t i n g wi th
”∗” and c o n t a i n i n g ”u , d , r ”
as each l e t t e r

Output : P r in t s code and then contour p l o t f o r g i ven code
”””
print (code)
i f code [0] != ”∗” :

raise ValueError (” Parsons Code must s t a r t with ’∗ ’ ”)

c o n t o u r d i c t = {}
p i t ch = 0
index = 0

maxp = 0
minp = 0

c o n t o u r d i c t [(p itch , index)] = ”∗”

for po int in code :
i f po int == ” r ” :

index += 1
c o n t o u r d i c t [(p itch , index)] = ”−”

index += 1
c o n t o u r d i c t [(p itch , index)] = ”∗”

e l i f po int == ”u” :
index += 1
p i t ch −= 1
c o n t o u r d i c t [(p itch , index)] = ”/”

index += 1
p i t ch −= 1
c o n t o u r d i c t [(p itch , index)] = ”∗”

i f p i t ch < maxp :
maxp = pi tch

e l i f po int == ”d” :
index += 1
p i t ch += 1
c o n t o u r d i c t [(p itch , index)] = ”\\”

6

index += 1
p i t ch += 1
c o n t o u r d i c t [(p itch , index)] = ”∗”

i f p i t ch > minp :
minp = pi t ch

for p i t ch in range (maxp , minp+1):
l i n e = [” ” for in range (index + 1)]
for pos in range (index + 1) :

i f (pitch , pos) in c o n t o u r d i c t :
l i n e [pos] = c o n t o u r d i c t [(p itch , pos)]

print (”” . j o i n (l i n e))

i f name == ” main ” :
contour (sys . argv [1])

7

